重金属の人体影響及び重金属コントロールのあり方

愛媛大学農学部 森田昌敏

※たくさんの図表を示していただいての詳 しいご講演でしたが、紙幅の関係で概略 のみをご紹介します。(文責:編集部)

1 はじめに

重金属の問題は古くて新しい問題です。

江戸時代には、鉄や青銅の採掘・利用の過程において、 多くの健康被害を生み出し、鉱山で採掘にあたった作業者 に至っては寿命が3年と言われていました。また、カドミ ウムや有機水銀がもたらした、イタイイタイ病や水俣病と いった深刻な公害はみなさんもよくご存知かと思います。

もっとも、これらの問題は、決して過去のものとなった わけではありません。たしかに、現代においては、過去に みられたほどのひどい汚染はなくなってきたようです。し かし、私達の身のまわりには、実は多くの元素がさまざま な形で思わぬ接触が進んでいるのです。その影響を正しく 認識するために、いま毒性学的な理解を私達ひとりひとり が知ることが求められています。

2 必須元素

必須元素は現在、フッ素、ケイ素、バナジウム、クロム、 マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ヒ素、セ レン、モリブデン、スズ、ヨウ素の15種類があると考えら れています。これらが不足した場合、動物では、成長低下 や貧血等の影響が生じることがわかっています。ただ、人 間にこのような影響が生じるかはいまだ不明なことも多い ようです。注意しなければならないのは、必須元素でも過 剰に摂ると毒性を示す物質があるという事実です。たとえ ば、銅、ヒ素、モリブデンが挙げられます。また、バナジウ ムについても過剰摂取による発がん性が疑われているよう です。以上のことについては右の表を参照してください。

他方で、必須性を示さず、少量で毒性を示すものがあり ます。有害元素と言われ、カドミウム、水銀、鉛がこれに あたります。

3 重金属の吸収経路

重金属を吸収する経路は、消化管吸収、経皮吸収、経気 道吸収の3つに分類されています。

まず、第一の消化管吸収。この経路からの吸収は、生物 の年齢、健康状態、勤続の過不足状態、消化器の状態、重 金属化合物の化学形態とその量、食物中の他の成分(有機 物、無機物)など、数多くの因子により左右されます。

第二に経皮吸収。実は、皮膚は厚いケラチン膜で覆われ ているため、皮膚から重金属を吸収することはあまりおこ りません。もっとも、脂溶性の化合物であるジメチル水銀 やテトラエチル鉛等、6価の酸素酸塩などは、皮膚から吸 収されることが知られています。

第三に経気道吸収。大気中に金属化合物がガス状、ある いは細かい粒子として存在しているとき、呼吸を通じて体

必須微量元素の役割

元素	機能	不足症状	
		動物	人間
フッ素	歯の構成	虫歯、成長低下	虫歯
ケイ素	石灰化、結合組織に必要	成長低下、骨の異常	不明
バナジウム	不明	成長低下、脂質欄異 執・生殖能力低下	不明
クロム	インシュリン活性化	インシュリン抵抗性	不明
マンガン	ムコ多糖代謝、スーパーオ キシドディスミュターゼ	成長低下、骨の異常	不明
鉄	酸素運搬あるいは酸化・ 還元酵素活性中心	貧血	貧血
コバルト	ビタミンB12	貧血	貧血
ニッケル	鉄吸収、ウレアーゼ	成長阻害、貧血	不明
銅	多数の銅酵素群	貧血	貧血、血清 コレステロ ール上昇
亜鉛	多数の亜鉛酵素群	成長阻害、皮膚症状、 生殖器官の発育不足	成長阻害、生 殖器官の発 育不足、味覚 異常
ヒ素	不明	成長・生殖阻害	不明
セレン	グルタチオンペルオ キシダーゼ	成長阻害	keshan病、心 筋障害
モリブデン	キサンチン、アルデヒド、 スルフィドオキシターゼ	成長阻害	不明、精神障害?
スズ	不明	成長阻害	不明
ヨウ素	甲状腺ホルモン	甲状腺腫	甲状腺腫

内に侵入する場合があります。体内に溶解するものは、溶 解後吸収されて血流に乗って各臓器や組織に運ばれます。 このとき輸送にかかわるのは、グロブリンやアルブミンの ようなタンパク質、あるいは赤血球や白血球のような細胞 です。他方、体内に溶解しないものは、肺に沈殿してしば しば沈着部位に障害を残します。

4 重金属の臓器分布

金属の臓器分布(右表)は、金属の投与ルート、たとえ ば経口的か経気道的、あるいは腹腔膜への注射、金属化合 物の量と化学形態、動物の種類などによって異なります。 もっとも肝臓や腎臓に集まることが多いようです。

5 重金属の排泄

体内の金属濃度を保つために、体内に取り込まれた重金 属の排泄です。ルートと速度の2点から分析されています。

まず、ルートですが、①ふんとしての排泄、②尿として の排泄、③皮膚からの排泄、④呼吸器からの排泄、⑤その 他母乳などがあります。ダイオキシンのような脂溶性の高 いものについては、⑤の母乳からのルートを気をつける必 要があるといえます。

次に、速度ですが、小動物では速く、人間では遅いそう です。

6 重金属による中毒例――鉛、ヒ素、水銀、ニッケルに 重点を例として

(1) 鉛

鉛は、有害重金属のうちもっとも大量に生産されている 重金属です。世界の年間生産量で330万トン、リサイクル鉛 を含めると消費量は年間560万トンにも及びます。このうち の90パーセントは、自動車のバッテリー等の用途で北半球 で消費されています。

加鉛ガソリン、鉛の製造と加工、天然の鉛降下物を主た る原因とした鉛による大気汚染が従容来問題となってきま したが、現在、わが国ではハイオクガソリンへの鉛の使用 がないため、空気中の鉛は低くなっています。もっとも、 廃バッテリーや鉛ハンダの使用の結果、工場跡地等での土 壌汚染が問題となっています。また、容器由来で食品が鉛 により汚染されるケースもあります。

鉛中毒による疾患のもっとも多い症状が、眠気や麻痺、 よろけあるいは昏睡及び神経症状です。その他、眼筋麻痺、 下腿と足の伸筋麻痺、視神経障害による失明、脳髄液の圧 の低下と、高濃度のタンパク質と白血球を含むなどの影響 が生じることがあります。また、生殖系への影響が指摘さ れており、将来世代への影響を無視することは出来ません。

いろいろな元素の主要蓄積部位

元素	臓器 (組織)	元素	臓器 (組織)
Sr	骨	Fe	血液、肝臓、腎臓
Ba	骨	Co	骨、脾臓、肝臓
Ra	骨	Ni	肝臓、腎臓
Y	骨	Cu	肝臓、腎臓、脳
La	骨、肝臓	Ag	腎臓、肝臓、脾臓
Ti	肺、心臓、肝臓	Cd	腎臓、肝臓
Zr	骨、肺	Hg	腎臓、肝臓
Hf	肝臓、骨	Zn	腎臓、肝臓
Ga	骨	V	心臓、脾臓
Nb	骨	Tl	腎臓、骨、肝臓
Ta	骨	Sn	肝臓、腎臓
Pu	骨	Мо	肝臓
Pb	骨、肝臓	W	腎臓
Sb	肝臓	Mn	肝臓、腎臓、脾臓
Bi	肝臓、腎臓、脾臓		

(2) ヒ素

ヒ素は自然界に広く分布する元素で、海水中などにも存 在します。そのため海産物に濃縮されているおそれがあり ます。また、味がなく気づきにくいことから化学兵器に使用 されたり、その他除草剤や殺虫罪としても使用されていま

ヒ素に非致死レベルで暴露した場合、全身症状として発 熱、体重減、消化器症状として食欲不振、下痢、嘔吐、肝 肥大、肝機能障害、呼吸器症状として咳、鼻汁、皮膚症状 として汗疹、発疹、色素沈着、色素脱色、皮膚剥離、脱毛、 爪の変化、粘膜症状として口内炎、結膜炎、眼瞼浮腫、脳 神経症状として痙攣等が生じます。

(3) 水銀

水銀は、常温で液体の唯一の元素であり、蒸発圧が高いた め、大気中に放出されやすく、水銀による中毒は歴史的に 古いようです。水俣病の原因としても知られます。

水銀は、蛍光灯や温度計、塩の電解電極、アムルガムに 使用されており、水銀化合物は、殺菌剤や顔料、触媒とし て使用されてきましたが、先進国ではその消費量は着実に 減少しているそうです。

高濃度水銀蒸気に暴露すると、気道刺激、化学性肺炎、 肺浮腫を引き起こします。また、経口的に摂取すると、消 化管がダメージを受け、嘔吐、血便胃痛、腎機能低下、尿 毒症を示します。

(4) ニッケル

ニッケルは、これなしでは生活が困難であるため、一度 過剰化すると非常にやっかいな元素です。

皮膚炎の原因でもあり、また、精子形成への障害作用と いった将来世代への影響も重要です。

カドミウムなど重金属による土壌・農作物汚染

茨城大学名誉教授 浅見輝男

カドミウム中毒によるイタイイタイ病、有機水銀中毒に よる水俣病が深刻な社会問題になってから久しいですが、 イタイイタイ病、水俣病も未だ問題は解決していません。 イタイイタイ病の原因物質であるカドミウム、難燃剤とし て大量に使われているアンチモン、有益であるという錯誤 から飲用され死亡事故を起こしたゲルマニウム、神栖市の 有機ヒ素化合物による環境汚染・人体被害について、たい へん興味深いお話がありました。詳細なデータを用いての 詳しいご講演でしたが、紙幅の関係で概略のみご紹介しま す。(文責:編集部)

1. カドミウムによる土壌とコメの汚染

農用地土壌汚染対策地域

日本では重金属汚染のうちカドミウム汚染が最も深刻で ある。一番最近では、大牟田の100haが2004年11月4日に汚 染地として指定された。カドミウムによる土壌汚染問題は 未だ続いている。

コメ中カドミウム濃度の許容基準値

日本における食品中カドミウムの許容基準値(最大レベ ル、最大基準値) は玄米についての1.0mg/kg (以下現物当り) しかない。国際的にはFAO/WHOの下部機関のコーデックス 食品添加物・汚染物質部会(CCFAC)において、食品基準 値について検討が行われ、コーデックス食品規格委員会 (CAC) で採択された精米中カドミウムの最大レベル案は、 当初は0.1mg/kg、1999年に0.2mg/kgに変更され、日本政府の 強い働きかけにより0.4mg/kgになった経緯がある。

CCFACに対する日本政府の主張

日本政府の主張は(1)日本は火山灰土壌が広く分布して おり、火山灰土壌はカドミウム濃度が高いので作物中濃度 も高い、(2) 日本の非汚染土壌でも0.4mg/kgに近い濃度のカ ドミウムを含むコメが生産された、(3) 国内データを用い て実施した確率的曝露評価によっても0.4mg/kgのレベルはい かなる公衆衛生上の問題を起こさないという三点であるが、 いずれも理由にはならない。

(1) について:火山爆発で噴出される火山弾や火山灰は 1000℃なので、767℃と沸点の低いカドミウムは火山爆発の 際にほとんど気化して火山噴出物から分離される。火山灰 土壌は汚染カドミウムを多く集積するが、火山灰土壌には

アロフェンなどの粘土鉱物と有機物が多く含まれ、それら がカドミウムを強く吸着するため、イネによって吸収され にくい。

- (2) について:根拠とされている調査で対象とされた場所 は、いずれも非汚染土壌とはいえず、カドミウムによって 汚染されていたと考えられる。
- (3) について:この「確率的曝露評価」は、食品摂取量に ついては国民栄養調査(平成7~12年)のデータを用い、 20歳以上でかつ妊娠していない者のデータを用いたとのこ とであるが、年少の人ほど体重1kg当たりの食品摂取量 (したがってカドミウム摂取量)が多いと考えられるのに19 歳以下を除いた理由が説明されていない。香山(2003)「カ ドミウムの吸収率に関する研究」によれば、体重1kg当た りのカドミウム吸収量は年齢が低いほど著しく高くなる。

また、確率的曝露評価が用いた農水産物中カドミウム濃 度の値にも大きな疑問がある。

本来あるべきコメ中カドミウム濃度

カドミウム汚染地における疫学研究を基に算出したコメ 中カドミウムの最大レベルは0.05~0.11mg/kgである。したが って、CCFACが決めた0.4mg/kgは勿論、原案の0.2mg/kgでも 高すぎる値である。

世界におけるカドミウム生産量と消費量

2006年のカドミウム生産量の56.5%をアジアで占めている が、そのほとんどは東アジア(韓国、中国、日本)である。 カザフスタンもかなり多い。また、アメリカ大陸のカナダ、 メキシコもかなり多い。一方、同年の消費量はアジアが 52.3%を占め、中国が33.6%と圧倒的に多い。第2位はベル ギー、日本の消費量は2000年の3分の1に減ったが世界の 第3位である。生産量・消費量共に世界の半分以上を占め ているアジア、特に韓国、中国、日本など東アジアの国々 におけるカドミウム汚染が深刻であると考えられ、中国、 韓国が日本の二の舞を踏まないことを念願したい。

2. アンチモン (Sb) による土壌汚染

アンチモンの人体影響

アンチモンは心臓毒性を持つことが知られている。また、 人に対する慢性毒性として、呼吸器系の刺激症状、アンチ モン斑と呼ばれる膿胞性皮疹が認められることがある。ア ンチモンエアロゾルに曝露された婦人労働者に後期自然流 産・未熟児出生・婦人科的問題の増加がある。アンチモン は発がん性物質である可能性がある。

アンチモンの非汚染土壌中濃度

日本各地の非汚染土壌表層土のアンチモン濃度の幾何平 均値は0.37mg/kgDW(DW:乾重)である。また、日本各地の 土壌(表層土・下層土含む)のアンチモン濃度の中央値は

0.65mg/kgDWである。

アンチモンの汚染土壌中濃度

もっぱらアンチモンの製錬をしている日比野金属、三国 精錬、中瀬鉱山などの周辺土壌中アンチモン濃度は、幾何 平均値で10.8、49.2、19.2mg/kgDW、最大値では136、277、 321mg/kgDWであり、非常に高い値であった。工場労働者は 勿論、アンチモン汚染地周辺住民の健康状態の調査が必要 である。

アンチモンの生産・輸入量と消費・輸出量

生産量は1970年をピークに激減し、輸入量が急増してい る。アンチモンの消費量では、鉛蓄電池用、硬鉛鋳物用が 若干で、三酸化アンチモンの消費量はほとんどが合成繊維 の難燃剤である。

都市ゴミ中アンチモン濃度

1996年1~3月の大阪市内の都市ゴミ焼却場からの試料 による分析から、アンチモン濃度は30~50mg/kgであり、こ れが都市ゴミ中アンチモンの平均値であると仮定すると、 アンチモンの国内生産量の約20%が都市ゴミとして排出さ れることになる。都市ゴミ焼却場から排出されるアンチモ ンによる環境汚染も気になるところである。

道路脇粉じん中アンチモン濃度

道路脇粉じんにもアンチモンは含まれている。日立市を 除いては、大都市ほど道路脇粉じん中アンチモン濃度は高 いようである。道路脇粉じんは風により巻き上がり、吸気 中に入る可能性がある。

3. ゲルマニウム

日本のゲルマニウムは全部輸入に頼っており、2000年の 輸入量は37.2t、同年の世界におけるゲルマニウム生産量は 58tだったので、日本はゲルマニウム消費大国である。主な 用途はペットボトル樹脂用触媒(2000年の使用量の65%)、 光ファイバー、蛍光体、半導体、赤外線素子用窓材などで ある。

ゲルマニウムの植物に対する害作用

ケイ素を多く含む植物である水稲に対する害作用は大き い。ゲルマニウム (GeO2として) が10~45mg/L含まれた工 場廃液で水稲を培養したところ、枯死した。

ゲルマニウムによる人体被害

ゲルマニウムが注目を集めたのは、朝鮮人参等の生薬中 のゲルマニウム含有量が大であると言われたことによるが、 これは検証されていない。ゲルマニウム中毒症の三主徴は、 原因不明の腎不全ないし腎障害、貧血、ミオパチー(筋症、 筋肉自体が侵されて生じる疾患の総称)であり、その他し びれや知覚障害等である。ある調査では23例中6例が死亡

サプリメントとして与えられて摂取した子どもの死亡例 がある。

ゲルマニウムを含有させた食品の取扱いについて(厚生省 通達)

厚生省が1988年10月12日に出した通達によると、ゲルマ ニウムを含む食品は使用禁止にはなっていない。

4. 神栖市の有機ヒ素 (芳香族ヒ素化合物) による環境汚 染・人体被害

問題の発端

1999年、神栖町木崎地区にある運輸会社の寮の井戸から 環境基準値より40倍も高い高濃度のヒ素が検出されたがそ のまま放置された。共同井戸を使っていた住民が2000年か ら2003年にかけて相次いで症状を訴えて入院。問診による と「数匹の犬が、ここ数年で相次いで死んだ」「ハムスター 等の小動物がすぐに死んだ」「切花を井戸の水に活けると 1 日で萎れた」「泊まりに来た親戚の調子が悪くなる」。その 後2003年3月になって小児(7歳と1歳8カ月)が類似の 症状を呈した。

井戸水のヒ素濃度

共同井戸 (A井戸) の水から2003年3月19日にヒ素が水 質基準値の450倍の4.5mg/Lが検出された。原因物質は主とし てジフェニルアルシン酸 (DPAA) である。DPAAはヒ素と して最大15mg/L検出された。A井戸の西方約1kmに位置す る地区のB井戸の水から環境基準の43倍のヒ素が検出され た。

住民健診結果と中毒症状

2003年4月に行われた住民健診でみられたDPAAなどによ る中毒症状として、急性・亜急性症状は歩行障害、構音障 害、巧緻運動障害などの小脳症状、四肢振戦、ミオクロー ヌス、復視などの小脳・脳幹症状に加え、睡眠障害、記憶 力障害、視覚異常などの大脳皮質の側頭葉・後頭葉症状な どがあった。原因物質曝露から1~2週間遠ざかると症状 が軽快・消失し、再曝露にて1~2カ月で再び症状が出現 するのが特徴とされた。

ジフェニルアルシン酸の由来

2005年1月に埋土層の中から高濃度のDPAAを含むコンク リート様の塊が発見された。そこはA井戸の東南90mの地 点で、生け簀を埋め戻した場所である。生け簀設置時期は 平成3~4年頃、埋め戻したのは平成5年頃である。原因 者は特定できなかったという。

コンクリート様の塊の処理とその問題点

DPAAを含むコンクリート様の塊、汚染土壌および有機と 素による汚染米などは一般廃棄物・産業廃棄物と共に混合 処理された。投棄行為者を捜索すべきであるのに、環境省 は住民の不安を口実にしてこのコンクリート様の塊を早々 に搬出して焼却処分してしまった。その結果、実行行為者 の捜索が棚上げされたまま、「少なくとも旧日本軍や国はこ の事件に関与していない」として、事実上国の責任が放棄 されたまま、幕引きが図られた。このような一連の措置は 国による証拠隠滅であるということができるであろう。