市民による食品測定活動から 見えてきたもの

中地 重腊 理事・T ウオッチ代表

3月31日、国民会議の理事であり、有害化学物質 削減ネットワーク (Tウオッチ) の代表でもある中 地重晴さんを講師として迎え、市民による食品の放 射能汚染測定活動から見えてきたことをお話いただ きました。

1、東日本大震災と環境問題

私は、東日本大震災による環境問題について3つ の問題意識を持っていました。①有害化学物質の流 出と、②解体工事によるアスベストの飛散、③福島 第一原発事故による放射能汚染です。そこで、Tウ オッチでは、約3年間で被災地の有害化学物質汚染 と放射能汚染の実態調査をし、復興に向けた提言を 行うというプロジェクトを三井物産環境基金の助成 を得て、開始しました。

まず、①有害物質の流出についてですが、津波で 海岸地帯の工場の被害が大きかったため、工場で 保管していた有害化学物質が流出したと考えられ ます。環境省の報告によると、高濃度のPCBを含 むトランス1台、コンデンサ48台が流されてしまっ たことが明らかになりました。一時は、毒劇法に 基づくアンケート調査で、六フッ化フランが流出し たのではないかという懸念もありましたが、実は被 災地に保管されているという届出がされていただけ で、実際には青森県の六ヶ所村に保管されていたの で流出していないことがわかったということがあり ました。Tウオッチでは、被災地で有害物質の汚染 を測定し、鉛やほう素で汚染されているところを特 定しましたが、恐れていたほど汚染は拡散してい ないことがわかりました。ただ、海からやってきた ヘドロのダイオキシン類濃度が一桁高い数値がでた ところもあり、部分的には汚染されているところも 多いです。アメリカでは、ハリケーン・カトリーナ 発生後に有害化学物質情報を活用しており、日本で もPRTR情報を利用し、汚染状況を監視していき たいと思っています。もっとも、多くの中小の事業 者は事業を再開できておらず、また報告されている データの正確性にも疑問はあります。②のアスベス トについては、古い建物が少なかったため、吹き付 けアスベストの飛散はそれほどひどい状況ではなさ そうでした。

2、Tウオッチによる食品の放射能汚染測定 活動

私は、1986年のチェルノブイリ原発事故後、「た べものの放射能をはかる会」(1989~2000) の活動 として、ベラルーシで食品測定器の支援と、輸入 食品の放射能汚染測定を行ってきた経験がありまし た。そこで、③福島第一原発による放射能汚染につ いても、Tウオッチで食品の放射能汚染をはかるこ とにしました。以前、使用していたNalシンチレー ションカウンタの部品が寿命で使えなくなっていた ため、新しい部品を購入し、2011年5月20日から稼 動させました。2012年3月21日までの10カ月間に約 680件の測定(市民の依頼による測定と、自主測定 を含む)を行い、埼玉と静岡のお茶から暫定基準値 を超える汚染が確認されました。自主測定では、汚 染の実態を把握し汚染地域の農業をいかに守るかと いう観点から、福島県だけではなく、栃木県那須塩 原市のアジア学院や埼玉県小川町など有機農業で有 名な場所での測定を行っています。

3、食品の放射能汚染の状況

食品の放射能の汚染状況を見てみましょう。食品 は体内に入りますから、内部被曝が起こります。内 部被曝の影響は、量が少なくても毎日被曝し続ける ことになる、という点を考えなければなりません。 魚介類は取れた場所ではなく、水揚げされた漁港が

被災した日本製紙株式会社の工場(宮城県石巻市大川地区)

産地となります。たとえば、マグロは三陸沖を回遊 し、九州で水揚げされることも多いので、産地から は汚染されているかどうかが簡単にはわかりませ ん。また、検査体制が整っているといっても、すべ ての魚を検査できるわけではないですし、魚介類は 新鮮さが重要なので、検査結果がわかった時にはも う消費者の手に渡っているということもあります。 少し前のデータになりますが、魚介類について、魚 種ごとに汚染の最高値の一覧をつくり、週刊金曜日 に公表しましたので参考にしてください。

牛肉については、放射能汚染された稲わらを餌に していた肉牛が汚染されていたことが判明しまし た。仮に、3000ベクレル/kgの牛肉200gを毎日食 べると1年間で2.8ミリシーベルトになります。

秋田県で栃木県産の腐葉土から高濃度のセシウム が検出され、2011年8月1日付で、肥料、飼料に基 準値が設定されました。

Tウオッチによる放射能汚染測定結果でも現在 は、セシウム134、137による汚染が問題で、降下 物によるお茶を含む葉物野菜の汚染が確実であるこ と、根菜類の汚染は比較的低いということです。陰 膳方式の測定の必要もありますが、現在、公表され ている陰膳方式の測定結果は低めになっているよう に感じます。

かなり広範囲に放射能が飛散して沈着し、土壌が 汚染されているので、東日本では有機農業ができな くなるという危機的な状況となっています。食べ物 の放射能汚染は長期にわたるので、放射能汚染と付 き合う時代が到来したと認識すべきでしょう。

それなのに、文部科学省は、自然の放射能は大丈 夫だと宣伝をしています。日本では、福島第一原発 の事故前までは年間1ミリシーベルトを基準として

いたのに、事故後は世界の平均は年間2.4ミリシー ベルトであることを強調するようになり、情報操作 をしようとしているので注意が必要です。

4、市民による放射能測定活動と今後の課題

食品の放射能汚染を正確に測定することは簡単で はありません。たとえば、学校給食における食品検 査は、検査の頻度も調査方法も陰膳方式か調理の前 後に行うのかなど、自治体毎にばらばらで統一され ておらず、検査体制が十分に確立しているとは言え ないので検査結果はあまり信用できません。厳しい 独自基準を設定している自治体も限られています。

東日本を中心に、約80カ所の市民測定器がありま す。主に、簡易型のNaIシンチレーターによる自動 測定器がおおいのですが、正確に測るためのノウハ ウ、知識が十分ではありません。校正線源(セシウ ム134、137)の入手が難しいので、ゲルマによる値 付けをした準校正線源(お茶)を共有化するなど、 技術的な向上を図るという面と、運動を広げるとい う面の両方において、市民測定活動のネットワーク 化が必要となっていると思います。

5、さいごに

セシウム134とセシウム137の放出割合は1:1で す。セシウム134の半減期は2年ですが、セシウム 137の半減期は30年ですので、10分の1になるまで に100年かかります。汚染を避けて暮らすことを意 識付けることが必要です。食品の汚染レベルを詳細 に測定し、食品と土壌汚染の情報公開を進め、土壌 の除染作業を進めていくことが求められます。

(本稿は、2012年3月31日の講演を広報委員会で構 成したものです。)